Volumes 介绍
Pod Volumes
首先来看一下 Pod Volumes 的使用场景:
- 场景一:如果 pod 中的某一个容器在运行时异常退出,被 kubelet 重新拉起之后,如何保证之前容器产生的重要数据没有丢失?
- 场景二:如果同一个 pod 中的多个容器想要共享数据,应该如何去做?
以上两个场景,其实都可以借助 Volumes 来很好地解决,接下来首先看一下 Pod Volumes 的常见类型:
- 本地存储,常用的有 emptydir/hostpath;
- 网络存储:网络存储当前的实现方式有两种,一种是 in-tree,它的实现的代码是放在 K8s 代码仓库中的,随着k8s对存储类型支持的增多,这种方式会给k8s本身的维护和发展带来很大的负担;而第二种实现方式是 out-of-tree,它的实现其实是给 K8s 本身解耦的,通过抽象接口将不同存储的driver实现从k8s代码仓库中剥离,因此out-of-tree 是后面社区主推的一种实现网络存储插件的方式;
- Projected Volumes:它其实是将一些配置信息,如 secret/configmap 用卷的形式挂载在容器中,让容器中的程序可以通过POSIX接口来访问配置数据;
- PV 与 PVC 就是本文要重点介绍的内容。
Persistent Volumes
接下来看一下 PV(Persistent Volumes)。既然已经有了 Pod Volumes,为什么又要引入 PV 呢?我们知道 pod 中声明的 volume 生命周期与 pod 是相同的,以下有几种常见的场景:
- 场景一:pod 重建销毁,如用 Deployment 管理的 pod,在做镜像升级的过程中,会产生新的 pod并且删除旧的 pod ,那新旧 pod 之间如何复用数据?
- 场景二:宿主机宕机的时候,要把上面的 pod 迁移,这个时候 StatefulSet 管理的 pod,其实已经实现了带卷迁移的语义。这时通过 Pod Volumes 显然是做不到的;
- 场景三:多个 pod 之间,如果想要共享数据,应该如何去声明呢?我们知道,同一个 pod 中多个容器想共享数据,可以借助 Pod Volumes 来解决;当多个 pod 想共享数据时,Pod Volumes 就很难去表达这种语义;
- 场景四:如果要想对数据卷做一些功能扩展性,如:snapshot、resize 这些功能,又应该如何去做呢?
以上场景中,通过 Pod Volumes 很难准确地表达它的复用/共享语义,对它的扩展也比较困难。因此 K8s 中又引入了 Persistent Volumes 概念,它可以将存储和计算分离,通过不同的组件来管理存储资源和计算资源,然后解耦 pod 和 Volume 之间生命周期的关联。这样,当把 pod 删除之后,它使用的PV仍然存在,还可以被新建的 pod 复用。
PVC设计意图
- 职责分离,PVC中只用声明自己需要的存储size、access node等业务真正关心的存储需求,PV和其对应的后端存储信息则由交给cluster admin统一运维和管控,安全访问策略更容易控制。
- PVC简化了User对存储的需求,PV才是存储的实际信息的承载体,通过kube-controller-manager中的PersisentVolumeController将PVC与合适的PV bound到一起,从而满足User对存储的实际需求。
- PVC像是面向对象编程中抽象出来的接口,PV是接口对应的实现。
access node是什么?其实就是:我要使用的存储是可以被多个node共享还是只能单node独占访问(注意是node level而不是pod level)?只读还是读写访问?用户只用关心这些东西,与存储相关的实现细节是不需要关心的。
Static Volume Provisioning
静态 Provisioning:由集群管理员事先去规划这个集群中的用户会怎样使用存储,它会先预分配一些存储,也就是预先创建一些 PV;然后用户在提交自己的存储需求(也就是 PVC)的时候,K8s 内部相关组件会帮助它把 PVC 和 PV 做绑定;之后用户再通过 pod 去使用存储的时候,就可以通过 PVC 找到相应的 PV,它就可以使用了。
静态产生方式有什么不足呢?可以看到,首先需要集群管理员预分配,预分配其实是很难预测用户真实需求的。举一个最简单的例子:如果用户需要的是 20G,然而集群管理员在分配的时候可能有 80G 、100G 的,但没有 20G 的,这样就很难满足用户的真实需求,也会造成资源浪费。有没有更好的方式呢?
Dynamic Volume Provisioning
动态供给是什么意思呢?就是说现在集群管理员不预分配 PV,他写了一个模板文件,这个模板文件是用来表示创建某一类型存储(块存储,文件存储等)所需的一些参数,这些参数是用户不关心的,给存储本身实现有关的参数。用户只需要提交自身的存储需求,也就是PVC文件,并在 PVC 中指定使用的存储模板(StorageClass)。
K8s 集群中的管控组件,会结合 PVC 和 StorageClass 的信息动态,生成用户所需要的存储(PV),将 PVC 和 PV 进行绑定后,pod 就可以使用 PV 了。通过 StorageClass 配置生成存储所需要的存储模板,再结合用户的需求动态创建 PV 对象,做到按需分配,在没有增加用户使用难度的同时也解放了集群管理员的运维工作。
用例解读
接下来看一下 Pod Volumes、PV、PVC 及 StorageClass 具体是如何使用的。
|
|
声明的两个卷,一个是用的是 emptyDir,另外一个用的是 hostPath,这两种都是本地卷。在容器中应该怎么去使用这个卷呢?它其实可以通过 volumeMounts 这个字段,volumeMounts 字段里面指定的 name 其实就是它使用的哪个卷,mountPath 就是容器中的挂载路径。
这里还有个 subPath,subPath 是什么?
先看一下,这两个容器都指定使用了同一个卷,就是这个 cache-volume。那么,在多个容器共享同一个卷的时候,为了隔离数据,我们可以通过 subPath 来完成这个操作。它会在卷里面建立两个子目录,然后容器 1 往 cache 下面写的数据其实都写在子目录 cache1 了,容器 2 往 cache 写的目录,其数据最终会落在这个卷里子目录下面的 cache2 下。
还有一个 readOnly 字段,readOnly 的意思其实就是只读挂载,这个挂载你往挂载点下面实际上是没有办法去写数据的。
另外emptyDir、hostPath 都是本地存储,它们之间有什么细微的差别呢?emptyDir 其实是在 pod 创建的过程中会临时创建的一个目录,这个目录随着 pod 删除也会被删除,里面的数据会被清空掉;hostPath 顾名思义,其实就是宿主机上的一个路径,在 pod 删除之后,这个目录还是存在的,它的数据也不会被丢失。这就是它们两者之间一个细微的差别。
PV Spec 重要字段解析
- Capacity:这个很好理解,就是存储对象的大小;
- AccessModes:也是用户需要关心的,就是说我使用这个 PV 的方式。它有三种使用方式。
- 一种是单 node 读写访问;
- 第二种是多个 node 只读访问,是常见的一种数据的共享方式;
- 第三种是多个 node 上读写访问。
用户在提交 PVC 的时候,最重要的两个字段 —— Capacity 和 AccessModes。在提交 PVC 后,k8s 集群中的相关组件是如何去找到合适的 PV 呢?首先它是通过为 PV 建立的 AccessModes 索引找到所有能够满足用户的 PVC 里面的 AccessModes 要求的 PV list,然后根据PVC的 Capacity,StorageClassName, Label Selector 进一步筛选 PV,如果满足条件的 PV 有多个,选择 PV 的 size 最小的,accessmodes 列表最短的 PV,也即最小适合原则。
- ReclaimPolicy:这个就是刚才提到的,我的用户方 PV 的 PVC 在删除之后,我的 PV 应该做如何处理?常见的有三种方式。
- 第一种方式我们就不说了,现在 K8s 中已经不推荐使用了;
- 第二种方式 delete,也就是说 PVC 被删除之后,PV 也会被删除;
- 第三种方式 Retain,就是保留,保留之后,后面这个 PV 需要管理员来手动处理。
- StorageClassName:StorageClassName 这个我们刚才说了,我们动态 Provisioning 时必须指定的一个字段,就是说我们要指定到底用哪一个模板文件来生成 PV ;
- NodeAffinity:就是说我创建出来的 PV,它能被哪些 node 去挂载使用,其实是有限制的。然后通过 NodeAffinity 来声明对node的限制,这样其实对 使用该PV的pod调度也有限制,就是说 pod 必须要调度到这些能访问 PV 的 node 上,才能使用这块 PV,这个字段在我们下一讲讲解存储拓扑调度时在细说。
PV状态流转
首先在创建 PV 对象后,它会处在短暂的pending 状态;等真正的 PV 创建好之后,它就处在 available 状态。
available 状态意思就是可以使用的状态,用户在提交 PVC 之后,被 K8s 相关组件做完 bound(即:找到相应的 PV),这个时候 PV 和 PVC 就结合到一起了,此时两者都处在 bound 状态。当用户在使用完 PVC,将其删除后,这个 PV 就处在 released 状态,之后它应该被删除还是被保留呢?这个就会依赖我们刚才说的 ReclaimPolicy。
这里有一个点需要特别说明一下:当 PV 已经处在 released 状态下,它是没有办法直接回到 available 状态,也就是说接下来无法被一个新的 PVC 去做绑定。如果我们想把已经 released 的 PV 复用,我们这个时候通常应该怎么去做呢?
第一种方式:我们可以新建一个 PV 对象,然后把之前的 released 的 PV 的相关字段的信息填到新的 PV 对象里面,这样的话,这个 PV 就可以结合新的 PVC 了;第二种是我们在删除 pod 之后,不要去删除 PVC 对象,这样给 PV 绑定的 PVC 还是存在的,下次 pod 使用的时候,就可以直接通过 PVC 去复用。K8s中的 StatefulSet 管理的 Pod 带存储的迁移就是通过这种方式。
架构设计
PV和PVC的处理流程
csi 是什么?csi 的全称是 container storage interface,它是K8s社区后面对存储插件实现(out of tree)的官方推荐方式。csi 的实现大体可以分为两部分:
- 第一部分是由k8s社区驱动实现的通用的部分,像我们这张图中的 csi-provisioner和 csi-attacher controller;
- 另外一种是由云存储厂商实践的,对接云存储厂商的 OpenApi,主要是实现真正的 create/delete/mount/unmount 存储的相关操作,对应到上图中的csi-controller-server和csi-node-server。
接下来看一下,当用户提交 yaml 之后,k8s内部的处理流程。用户在提交 PVCyaml 的时候,首先会在集群中生成一个 PVC 对象,然后 PVC 对象会被 csi-provisioner controller watch到,csi-provisioner 会结合 PVC 对象以及 PVC 对象中声明的 storageClass,通过 GRPC 调用 csi-controller-server,然后,到云存储服务这边去创建真正的存储,并最终创建出来 PV 对象。最后,由集群中的 PV controller 将 PVC 和 PV 对象做 bound 之后,这个 PV 就可以被使用了。
用户在提交 pod 之后,首先会被调度器调度选中某一个合适的node,之后该 node 上面的 kubelet 在创建 pod 流程中会通过首先 csi-node-server 将我们之前创建的 PV 挂载到我们 pod 可以使用的路径,然后 kubelet 开始 create && start pod 中的所有 container。
PV、PVC以及通过csi使用存储流程
主要分为三个阶段:
- 第一个阶段(Create阶段)是用户提交完 PVC,由 csi-provisioner 创建存储,并生成 PV 对象,之后 PV controller 将 PVC 及生成的 PV 对象做 bound,bound 之后,create 阶段就完成了;
- 之后用户在提交 pod yaml 的时候,首先会被调度选中某一个 合适的node,等 pod 的运行 node 被选出来之后,会被 AD Controller watch 到 pod 选中的 node,它会去查找 pod 中使用了哪些 PV。然后它会生成一个内部的对象叫 VolumeAttachment 对象,从而去触发 csi-attacher去调用csi-controller-server 去做真正的 attache 操作,attach操作调到云存储厂商OpenAPI。这个 attach 操作就是将存储 attach到 pod 将会运行的 node 上面。第二个阶段 —— attach阶段完成;
- 然后我们接下来看第三个阶段。第三个阶段 发生在kubelet 创建 pod的过程中,它在创建 pod 的过程中,首先要去做一个 mount,这里的 mount 操作是为了将已经attach到这个 node 上面那块盘,进一步 mount 到 pod 可以使用的一个具体路径,之后 kubelet 才开始创建并启动容器。这就是 PV 加 PVC 创建存储以及使用存储的第三个阶段 —— mount 阶段。
总的来说,有三个阶段:第一个 create 阶段,主要是创建存储;第二个 attach 阶段,就是将那块存储挂载到 node 上面(通常为将存储load到node的/dev下面);第三个 mount 阶段,将对应的存储进一步挂载到 pod 可以使用的路径。这就是我们的 PVC、PV、已经通过CSI实现的卷从创建到使用的完整流程。
总结
- 介绍了 K8s Volume 的使用场景,以及本身局限性;
- 通过介绍 K8s 的 PVC 和 PV 体系,说明 K8s 通过 PVC 和 PV 体系增强了 K8s Volumes 在多 Pod 共享/迁移/存储扩展等场景下的能力的必要性以及设计思想;
- 通过介绍 PV(存储)的不同供给模式 (static and dynamic),学习了如何通过不同方式为集群中的 Pod 供给所需的存储;
- 通过 PVC&PV 在 K8s 中完整的处理流程,深入理解 PVC&PV 的工作原理。
Комментарии